What you'll learn about

- Implicitly Defined Functions
- Lenses, Tangents, and Normal Lines
- Derivatives of Higher Order
- Rational Powers of Differentiable Functions

EQ: What is implicit differentiation, and how do we apply it?

Copyright 2007 Pearson Education, Inc. Publishing as Pearson Prentice Hall

Implicit differentiation allows us to find derivatives of functions that are not defined or written explicitly as a function of a single variable.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Example Implicitly Defined Functions

$$
\text { Find } \frac{d y}{d x} \text { if } x^{3}-7 x^{2} y^{3}+4 y^{2}=-16
$$

$$
3 x^{2}-7 x^{2}\left(3 y^{2} \frac{d y}{d x}\right)+(-14 x) y^{3}+8 y \frac{d y}{d x}=0
$$

$$
-21 x^{2} y^{2} \frac{d y}{d x}+8 y \frac{d y}{d x}=14 x y^{3}-3 x^{2}
$$

$$
\frac{d y}{d x}=\frac{14 x y^{3}-3 x^{2}}{8 y-21 x^{2} y^{2}}
$$

\qquad

\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

